

ESOGÜ Mechanical Engineering Department

COURSE INFORMATION FORM

COURSE CODE	COURSE NAME	SEMESTER	CREDITS		
151815346	FLUID MECHANICS	5	Т	U	ECTS*
			3	0	5

INSTRUCTOR NAME	LANGUAGE	COURSE TYPE**			
	English	CORE		ELECTIVE	
		X			
Prof. Dr. Necati MAHİR		Technical	De	esign	Other

	COU	RSE EVALUAT	ION	
	ACTIVITY	ACTIVITY Number		Percentage (%)
	Written exan	n	1	40
	Quiz			
MID-TERM	Homework			
	Project			
	Laboratory			
	Other ()			
	Oral exam			
	Homework + Oral exam			
FINAL	Project + Oral exam			
	Written exam		1	60
	Other ()			
	Oral	Written	Oral and Written	Multiple Choice
MAKE-UP EXAM**		X		-

COURSE CONTENTIntroductory concepts and definitions, The continuity equation, Euler equations of motion, Hydrostatics, Navier-Stokes equations, Some solutions of Navier-Stokes equations, The Bernoulli equation, Extended Bernoulli equation (Energy equation Engineering applications of the Bernoulli equation, Momentum theorems, Dimer analysis and similitude, Analysis of flow in pipes and over surfaces, Laminar and turbulent boundary layers, Potential flow.		
COURSE OBJECTIVES	Derivations of continuity equation, Euler's equations of motion, Navier-Stokes equations, Bernoulli equation, energy equation, and momentum equations used in science of Fluid Mechanics, and their use and utilization in engineering applications. Hydraulic energy conversion, importance of hydropower in hydroelectric power plants.	
COURSE AIMS	Physical properties of fluids, transport of fluids in pipes and ducts, hydraulic energy conversion, analysis of hydraulic systems, calculation of hydraulic losses, calculation of efficiencies of fluid machinery, and utilization of hydropower in hydroelectric power plants.	
TEXTBOOK(S)	Young, Munson, Okiishi, and Huebch, "A Brief Introduction to Fluid Mechanics" John Wiley & Sons, Inc.	
REFERENCES	P. Gerhart, A. L. Gerhart, J. Hochstein, "Fundamentals of Fluid Mechanics" Wiley.Frank M. White, "Fluid Mechanics", McGraw-Hill Book Company.	

* ECTS (European Credit Transfer System). ** Place (X) as appropriate.

COURSE OUTLINE		
WEEK	SUBJECTS / TOPICS	
1	Introduction to Fluid Mechanics	
2	Concepts and Definitions	
3	Pressure and Fluid Statics	
4	Fluid kinematics	
5	Bernoulli and energy equations	
6	Momentum analysis of flow systems	
7	Momentum analysis of flow systems	
8	Midterm	
9	Dimensional analysis and modeling	
10	Internal flow	
11	Internal flow	
12	Differentia analysis of fluid flow	
13	Approximate solution of Navier-Stokes Equations	
14	External flow: Drag	
15	External flow: Lift	
16	Final Exam	

OUTC	OMES			
S/N	At the end of the course, students will be able to:	Never	Few	Many
1	apply knowledge of mathematics, science, and engineering			X
2	design and conduct experiments as well as to analyze and interpret data		X	
3	design a system, component, or process to meet desired needs		Χ	
4	Incorporate in a team work		X	
5	function on multi-disciplinary teams		Χ	
6	identify, formulate, and solve engineering problems			X
7	use techniques, skills, and modern engineering tools necessary for engineering practice		X	
8	get an understanding of professional and ethical responsibility		X	
9	communicate effectively		X	
10	understand the broad education necessary to understand the impact of engineering solutions in a global and societal context		X	
11	get a recognition of the need for, and an ability to engage in life- long learning		X	
12	gain a knowledge of contemporary issues	X		

Prepared by: Prof. Dr. Necati MAHİR Signature(s):

Date: 06.07.2021